

The Commander parameter file

Beyond PLANCK

Kristian Joten Andersen

BeyondPlanck online hands-on tutorial, November 22-23, 2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

What is the Commander parameter file?

- All information going into any Commander run
 - The "recipe"

- Three main parameter types
 - Infrastructure parameters; these control the behaviour of the algorithms and IO
 - Data set parameters; properties of each data set
 - Model parameters; properties of each sky component
- Commander documentation is available through the project home page: <u>https://docs.beyondplanck.science/#/README</u> (direct link)
- Caveats:
 - This is a software platform for cutting-edge research, and therefore by nature a continuous work-in-progress.
 - "Alpha state"
 - Support is provided on a strictly voluntary basis; there is no designated "help desk"
 - If you find information missing, please contact us.

General notes about read-in

- Any line starting with # is assumed as a comment
- Blank lines are allowed

- Any specific path should be given inside apostrophes
 - 'path/to/some/data/data.dat'
- Every parameter takes the form:
 PARAMETER_NAME = value
- The *first* occurance of a parameter is the one that will be read

General notes about read-in

@INCLUDE

European Commission

- Recurse into the given file
- "@INCLUDE parfile2.txt" will include parameters from parfile2.txt at the current position in the original parameter file

Command line read-in

- Any parameter may be specified using the command line
- --PARAMETER_NAME=value (no spaces)
- Will override the parameter file for the specified parameter

Error checking and debugging

Parameter file is parsed at the beginning of the run

- Stored in-memory in a Fortran type called "cpar" ("Commander parameters")
- Active filenames are validated with respect to existence, but not content.
- Many types of parameter file errors are therefore (automatically) detected immediately, but not all.

Error checking and debugging

If you find that the code crashes with something that looks like a parameter error, typical things to check are the following:

• Is a given parameter of the correct/expected type?

- Check which line causes the crash, and look it up in comm_param_mod.f90
- Does a given file contain the expected data type?
- If it is an ASCII input file, does it have the correct format?

European Commission **Beyond PLANCK**

Algorithm specification

European Commission

= parameters that one is likely to change on a (semi-)regular basis when working with Commander, see the documentation for details.

	OPERATION VERBOSITY	= sample = 3	# {sample,optimize} # [0,,3]	
	######################################	############ specifica ####################################	######################################	
$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	<pre># Monte Carlo options NUMCHAIN NUM_GIBBS_ITER BASE_SEED CHAIN_STATUS NUM_INIT_CHAINS INIT_CHAIN01 NUM_GIBBS_STEPS_PER_TOD_SAMPL</pre>	= 1 = 1000 = 163425 = append = 1 = "data_B path E = 1 How	<pre># Number of independent chains # Length of each Markov chain # Seed for random number generat {append, new} P8/chain_init_BP8.15.h5:9" {new name sample y often to run TOD analysis</pre>	or }
* * * *	SAMPLE_ONLY_POLARIZATION SAMPLE_SIGNAL_AMPLITUDES SAMPLE_SPECTRAL_INDICES SAMPLE_POWSPEC	= .false. = .true. = .true. = .false.	Component separation analysis	
→ • *	ENABLE_TOD_ANALYSIS TOD_OUTPUT_4D_MAP_EVERY_NTH_I TOD_OUTPUT_AUXILIARY_MAPS_EVE TOD_INCLUDE_ZODI FFTW3_MAGIC_NUMBERS TOD_NUM_BP_PROPOSALS_PER_ITER	= .true. TER = 10 RY_NTH_ITE = .false. = 'data_B = 1 # 1	R = 10 P8/fft3_magic_numbers_230810.txt' L for sampling; >= 1 for optimize	TOD
			8	PLANC

Algorithm specification

<pre># Options for CMB resampling (RESAMPLE_CMB FIRST_SAMPLE_FOR_CMB_RESAMP LAST_SAMPLE_FOR_CMB_RESAMP NUM_SUBSAMP_PER_MAIN_SAMPLE</pre>	for = 1 = 1 = 1	constraine false. .5 .0	∍d	realization production)
# Numerical accuracy settings				
G CONVERGENCE CRITERION	=	fixed iter	#	{residual. chisquare}
CG LMAX PRECOND	=	-1	#	lmax for low-l preconditioner
CG MAXITER	=	300	#	Conjugate gradients time out limit
CG ⁻ MINITER	=	5		
CG_TOLERANCE	=	1.d-8	#	Fractional CG convergence criterion
CG_CONV_CHECK_FREQUENCY	=	1	#	Check convergence every n'th iteration
CG_PRECOND_TYPE	=	diagonal	#	{diagonal, pseudoinv} Seljebotn et al. 2019
CG_INIT_AMPS_ON_ZERO	=	.false.		
<pre>SET_ALL_NOISE_MAPS_TO_MEAN</pre>	=	.false.		
NUM_INDEX_CYCLES_PER_ITERATION	=	1		
IGNORE GAIN AND BANDPASS CORR	= .	false.		

* If using chisq: set to ~5 as this check is more expensive than residual

** Set all component amplitudes to zero for each CG search. Can lead to long convergence time

Output options

→ OUTPUT DIRECTORY = chains BP8 c16 Path to where all output files are written THINNING FACTOR = NSIDE CHISQ = 16POLARIZATION CHISQ = .true. OUTPUT MIXING MATRIX = .false. OUTPUT RESIDUAL MAPS = .true. OUTPUT CHISQ MAP = .true. OUTPUT_EVERY_NTH_CG_ITERATION = 0 OUTPUT_CG_PRECOND_ETGENVALS = .false. OUTPUT INPUT MODEL = .false. OUTPUT DEBUG SEDS = .false. OUTPUT SIGNALS PER BAND = .false.

Different options of what to output

- Output each instance as a HEALPix map at the band resolution/pixelarization. Use with care as this will require a lot of disk space.
- ** Outputs non-converged CG iterations to files. Use with care as they will overwrite converged samples with the same numbering. Only use for debugging.

Data sets: inclusion

European Commission	#######################################				
	# Da	ata se	ets		#
	#######################################	#####	*#########	#############	##########
			data DDO		Path to where (almost) all input data is stored
\rightarrow	NUMBAND	=	14		How many frequency bands are defined (any band with # higher will not be read)
	# LFI				
→	INCLUDE_BAND001	=	.true.	# 30 GHz	Per band inclusion flags.
	INCLUDE_BAND002	=	.true.	# 44 GHz	
	INCLUDE_BAND003	=	.true.	# 70 GHz	
	# HFI T				
	INCLUDE_BAND004		.true.	# 857 GHz	
	# Haslam and WMAP T				
	INCLUDE_BAND005		.true.	# Haslam	
	INCLUDE_BAND006	=	.true.	# WMAP Ka	Т
	INCLUDE_BAND007	=	.true.	# WMAP Q1	Т
	INCLUDE_BAND008	=	.true.	# WMAP Q2	Т
	INCLUDE_BAND009		.true.	# WMAP V1	Т
	INCLUDE_BAND010		.true.	# WMAP V2	Т
	# HFI P				
	INCLUDE_BAND011	=	.true.	# 353 GHz P	
	# WMAP P				
	INCLUDE_BAND012	=	.true.	# WMAP Ka P	
	INCLUDE_BAND013	=	.true.	# WMAP Q P	
	INCLUDE_BAND014		.true.	# WMAP V P	

PLANCK

Data sets: smoothing scales

	SOURCE_MASKFILE PROCESSING_MASKFILE PROCESSING_MASKFILE2 PROC_SMOOTH_SCALE	= none = none = none = 30.	<pre>#bright_sources.txt #procmask.fits #procmask2.fits #arcmin; smoothing inside processing mask</pre>
	<pre># Spectral index sampling optic NUM_SMOOTHING_SCALES</pre>	ons = 1	
**	SMOOTHING_SCALE_FWHM01 SMOOTHING_SCALE_LMAX01 SMOOTHING_SCALE_NSIDE01 SMOOTHING_SCALE_PIXWIN01	= 300. = 96 = 32 = pixel	# _window_n0032.fits HEALPix pixel window file
***	SMOOTHING_SCALE_FWHM_POSTPROC01	L = 600.	# Smoothing FWHM after sampling

- Helpful to mask out problematic point sources / regions, read documentation for details.
- ****** [arcmin] larger than any FWHM of bands included in sampling at this scale

European Commission

*** [arcmin] Any sampled spectral parameter at this smoothing scale will be smoothed with a beam of this FWHM after sampling. For pixel-region sampling, this is the smoothing between regions!

Data sets: band specifics

General parameter syntax: BAND_PARAMETERxxx = value xxx = 3-digit band number

European Commission

How to add new data bands will be shown in tomorrow's tutorials

	# 30 GHz parameters		
→	BAND_LABEL001	=	030
	BAND_TOD_TYPE001	=	'LFI' #{LFI, WMAP, none}
	BAND_OBS_PERIOD001	=	1
	BAND_POLARIZATION001	=	.true.
	BAND_NSIDE001	=	512
	BAND_LMAX001	=	1500
	BAND_UNIT001	=	uK_cmb
	BAND_NOISE_FORMAT001	=	rms
→	BAND_MAPFILE001	=	BP_030_map.fits
⇒	BAND_NOISEFILE001	=	BP_030_rms.fits
→	BAND_REG_NOISEFILE001	=	none # BP_030_regnoise.fits
⇒	BAND_NOISE_RMS001_SMOOTH01	=	BP_030_rms_smoothscale1.fits {native, none}
	BAND_NOISE_UNIFORMIZE_FSKY001	=	0.0
	BAND_MASKFILE001	=	fullsky
	BAND_BEAMTYPE001	=	b_l # {b_l, febecop}
	BAND_BEAM_B_L_FILE001	=	Bl_TEB_npipe6v19_30GHzx30GHz.fits
	BAND_BEAM_B_PTSRC_FILE001	=	febecop_AT20G_GB6_NVSS_PCCS2_v6_030.h5
	BAND_PIXEL_WINDOW001	=	pixel_window_n0512.fits
	BAND_SAMP_NOISE_AMP001	=	.false.

Data sets: band specifics

	BAND_SAMP_BANDPASS001	=	.false.
	BAND_BANDPASSFILE001	=	LFI_instrument_v4.h5
→	BAND_SAMP_GAIN001	=	.false.
⇒	BAND GAIN PRIOR MEAN001	=	= 1.
⇒	BAND GAIN PRIOR RMS001	Ē	= 0.1
→	BAND_GAIN_CALIB_COMP001	=	all 'cmb'
	BAND_GAIN_LMIN001	=	-1
	BAND_GAIN_LMAX001	=	-1 < 0 ~ no uppernower innit
	BAND_GAIN_APOD_MASK001	=	fullsky
	BAND_GAIN_APOD_FWHM001	=	120.
→	BAND_MASKFILE_CALIB001	=	<pre>mask_common_dx12_n0512_TQU.fits</pre>
	BAND_DEFAULT_GAIN001	=	1
	BAND_DEFAULT_BP_DELTA001	=	0.
	BAND_DEFAULT_NOISEAMP001	=	1.
	BAND COMPONENT SENSITIVITY001	=	broadband

Data sets: band specifics

European Commission

	BAND_TOD_MAIN_PROCMASK001 BAND_TOD_SMALL_PROCMASK001	<pre>= mask_proc_030_res_v = mask_smap6.fits</pre>	v5.fits
	BAND TOD BP INIT PROP001	= bp init 030 v1.dat	
	BAND TOD RIMO001	= LFI instrument v4.1	h5
*	BAND_TOD_FILELIST001	= filelist_30_v17.tx	t
	BAND_TOD_HALFRING001	= 0	
	BAND_TOD_START_SCANID001	= 3	
	BAND_TOD_END_SCANID001	= 44072	
	BAND_TOD_TOT_NUMSCAN001	= 45860	
	BAND_TOD_FLAG001	= 6111232	
	BAND_TOD_ORBITAL_ONLY_ABSCAL001	l =.false.	
	BAND_TOD_DETECTOR_LIST001	= "27M,27S,28M,28S"	
→	BAND_TOD_INIT_FROM_HDF001	= default	{default, none, path to chain+sample}

* TOD scan definition file. List of all compressed time-ordered data files with initial values. See documentation.

****	*	G	obal model pa	rameter	s	
European Commissi	on	MJYSR_CONVENTION T_CMB	= IRAS = 2.7255d0			
	→ →	INSTRUMENT_PARAM_FILE INIT_INSTRUMENT_FROM_HDF	= instrument_params.da = default	at	Initial band gain a bandpass correc	and tions
		CMB_DIPOLE_PRIOR # 'mask_common_dx12_n1024_TQU	= none J.fits; 3364.4; 263.998;	; 48.265' #	LFI 2018	
	* *	NUM_SIGNAL_COMPONENTS INCLUDE_COMP01 INCLUDE_COMP02 INCLUDE_COMP03 INCLUDE_COMP04	= 4 = .true. # Cmb # CMB; = .true. # synch # Sy = .true. # dust # The = .true. # md # Mono	; no monopol /nch pow-law ermal dust and dipoles	e {.true., .false.}	
		OUTPUT_COMPS_TO_CHAINDIR = 'a	11'			
CG	† †††	<pre>NUM_CG_SAMPLING_GROUPS = 2 CG_SAMPLING_GROUP01 CG_SAMPLING_GROUP_MASK01 CG_SAMPLING_GROUP_MAXITER01 CG_SAMPLING_GROUP02 CG_SAMPLING_GROUP_MASK02 CG_SAMPLING_GROUP_MAXITER02</pre>	<pre>= 'md' = mask_common_dx12_n102 = 3 = 'cmb,dust,synch' = fullsky = 50</pre>	24_TQU.fits Component Sampling m Max CG iter	labels ask rations (# of iterations	s for fixed_iter)
		<pre># Alm sampler settings ALMSAMP_NSAMP_ALM = 1 ALMSAMP_BURN_IN = 1 ALMSAMP_NSIDE_CHISQ_LOWRES ALMSAMP_PRIOR_FWHM ALMSAMP_OPTIMIZE_ALM ALMSAMP_OPTIMIZE_ALM ALMSAMP_PPLY_PRIOR ALMSAMP_PIXREG ALMSAMP_PRIORSAMP_FROZEN_REGI</pre>	00 # of mcmc samples p # of gibbs iterati = 16 = 0 = .false. # s = .true. # ap = .true. SONS = .true.	per gibbs ions with st save chisq f oply prior t	eplength adjustment rom prev gibbs iter o alms	a_Im spectral parameter sampler
		<pre>#local sampler settings LOCALSAMP_BURN_IN = 1</pre>	# of gibbs iterations 16	with steple	ngth adjustment	Beyond PLANCK

Model specific parameters

European Commission	# CMD			
→	# CMB COMP_LABEL01 COMP_TYPE01 COMP_CLASS01 COMP_POLARIZATION01 COMP_CG_SCALE01	<pre>= cmb = cmb = diffuse # {diffuse, ptsrc, te = .true. = 1.d0</pre>	General para COMP_PAR/ mplate} xx = 2-digit b	meter syntax: AMETERxx = value and number
	COMP_NSIDE01 COMP_MONOPOLE_PRIOR01 COMP_DEFLATION_MASK01 COMP_L_APOD01 COMP_LMIN_AMP01 COMP_LMAX_AMP01 COMP_LMAX_IND01	<pre>= 1024 = none "monopole:mask_common_dx1 = fullsky = 2000 = 0 = 2000 = 0</pre>	2_n1024_TQU.fits"	
	COMP_OUTPUT_FWHM01 COMP_UNIT01 COMP_NU_REF_T01 COMP_NU_REF_P01 COMP_CL_TYPE01 COMP_CL_POLTYPE01 COMP_CL_BETA_PRIOR_MEAN01 COMP_CL_BETA_PRIOR_RMS01 COMP_CL_DEFAULT_AMP_T01	<pre>= 14 # arcmin = uK_cmb = 1 100. = 1 100. = power_law # {none, single_l, bi = 1 # {1 = {T+E+B}, 2 = {T,E+B}, = 0.0 = 0.1 = 20 # Pivot multipole = 1000000 # D l = amp * (l</pre>	nned, power_law} 3 = {T,E,B}} /lpivot)**beta	
prior RMS	COMP_CL_DEFAULT_AMP_E01 COMP_CL_DEFAULT_AMP_B01 COMP_CL_DEFAULT_BETA_T01 COMP_CL_DEFAULT_BETA_E01 COMP_CL_DEFAULT_BETA_B01 #COMP_CL_TYPE01 #COMP_CL_BIN_FILE01 #COMP_CL_DEFAULT_FILE01 COMP_MASK01 COMP_INPUT_AMP_MAP01 COMP_PRIOR_AMP_MAP01 COMP_OUTPUT_ER_MAP01	<pre>= 1000 = 1000 = 0.d0 = -0.5d0 = binned # {none, binned, pow = bins_lmax2000_TE.dat # for bi = base_plikHM_TTTEEE_lowl_lowE_le = fullsky = init_cmb_amp_BP8.11.fits initialit = none</pre>	er_law} nned type nsing.minimum.theory_cl zation map prior	
→	COMP_DOTFOT_EB_MAPO1	= default		

17

PLANCK

Model specific parameters

sion	<pre># Synchrotron component</pre>		
	COMP_LABEL02	=	synch
	COMP_TYPE02	=	power_law
	COMP_CLASS02	=	diffuse # {diffuse, ptsrc}
	COMP_POLARIZATION02	=	.true.
→	COMP_CG_SCALE02	=	1 Multiplicative amplitude scale used in CG search
→	COMP_CG_SAMP_GROUP_MAXITER02	=	40 Max CG iterations in amplitude sampling after marginal
	COMP_NSIDE02	=	1024 likelihood spectral index sampling
	COMP_MONOPOLE_PRIOR02	=	none
	COMP_DEFLATION_MASK02	=	fullsky
	COMP_L_APOD02	=	1500
	COMP_LMIN_AMP02	=	0
	COMP_LMAX_AMP02	=	1500
	COMP_OUTPUT_FWHM02	=	60 # arcmin
	COMP_UNIT02	=	uK_RJ
→	COMP_NU_REF_T02	=	30
	COMP_NU_REF_P02	=	30
	COMP_MASK02	=	fullsky
	COMP_CL_TYPE02	=	gauss # {none, single_l, binned, power_law}
	COMP_CL_POLTYPE02	=	$2 \# \{1 = \{T+E+B\}, 2 = \{T,E+B\}, 3 = \{T,E,B\}\}$
	COMP_CL_BETA_PRIOR_MEAN02	=	-0.5
	COMP_CL_BETA_PRIOR_RMS02	=	0.1
	COMP_CL_L_PIVOT02	=	100 # Pivot multipole
	COMP_CL_DEFAULT_AMP_T02	=	1e3
	COMP_CL_DEFAULT_AMP_E02	=	200
	COMP_CL_DEFAULT_AMP_B02	=	100
	COMP_CL_DEFAULT_BETA_T02	=	60d0
	COMP_CL_DEFAULT_BETA_E02	=	3000
	COMP_CL_DEFAULT_BETA_B02	=	30d0

Model specific parameters: Synchrotron

→ COMP INDMASK02 COMP LMAX IND02 COMP PRIOR UNI BETA LOW02 COMP PRIOR UNI BETA HIGH02 → COMP PRIOR GAUSS BETA MEAN02 → COMP PRIOR GAUSS BETA RMS02 COMP APPLY JEFFREYS PRIOR02 → COMP BETA SMOOTHING SCALE02 → COMP BETA POLTYPE02 COMP BETA NU MIN02 COMP BETA NU MAX02 COMP INPUT AMP MAP02 COMP PRIOR AMP MAP02 COMP INPUT BETA MAP02 COMP DEFAULT BETA02 COMP OUTPUT EB MAP02

European Commission

COMP_INIT_FROM_HDF02

= 100= -4.5 = -1.5 = -3.1 Prior mean = 0.1 Prior RMS = .false. = 2 = 2 # index $\{1 = \{T+Q+U\}, 2 = \{T,Q+U\}, 3 = \{T,Q,U\}\}$ = 0. # Lowest frequency for index estimation in GHz = 80. # Highest frequency for index estimation in GHz = init synch amp.fits = none = init synch beta.fits default = -3.1= .false.

= mask synch beta BP8 10deg new chisqmask.fits

= default

Model specific parameters

European Commission

⇒	COMP_BETA_INT_LMAX02	=	-1 #	alm sampling (>=0), local sampling (-1)
	COMP_BETA_INT_LNLTYPE02	=	marginal	<pre># {chisq,ridge,marginal,prior}</pre>
	COMP_BETA_INT_PIXREG02	=	fullsky	# {fullsky,single_pix,pixreg}
	COMP_BETA_INT_SAMPLE_NPROP02	=	.false.	
	COMP_BETA_INT_SAMPLE_PROPLEN02	2 =	.true.	
	COMP_BETA_NPR0P02	=	fullsky	<pre># nprop map, local sampling (fullsky = 1)</pre>
	COMP_BETA_INT_NPROP_INIT02	=	1000	<pre># {> 0, < 0 to disable}. overwrites nprop</pre>
				<pre># init values from nprop map. local sampler</pre>
	COMP_BETA_UNI_NPROP_LOW02	=	10	<pre># {>= 0} local sampling. minimum number</pre>
				# of proposals per pixel region
	COMP_BETA_UNI_NPROP_HIGH02	=	2000	<pre># {> 0} local sampling. minimum number</pre>
				<pre># of proposals per pixel region</pre>
	COMP_BETA_MASK02	Ξ	<pre>mask_syn</pre>	ch_beta_local.fits
	COMP_BETA_PROPLEN02	=	fullsky	<pre># proposal length map, local sampling</pre>
				# (fullsky = 1.d0)
	COMP_BETA_INT_PROPLEN_INIT02	=	3.d-3	<pre># {> 0, < 0 to disable} overwrites proplen</pre>
				# init values from map
	COMP_BETA_ALMSAMP_INIT02	=	init_alm	_synch_beta_9reg.dat
	COMP_BETA_INT_NUM_PIXREG02	=	9 # numb	er of pixel regions to sample (from 1 to N)
			# regi	ons above N set to O (and prior value)
	COMP_BETA_INT_FIX_PIXREG02	=	none	<pre># {none, '1,3,4'} pixel regions to fix,</pre>
				# i.e. freeze on init
	COMP_BETA_INT_PIXREG_PRIORS02	=	none #	<pre>{none, string with prior means of all</pre>
				pixel regions}
	COMP_BETA_PIXREG_MAP02	=	<pre>map_9reg</pre>	ions_n1024.fits
				<pre>#(from 1 -> N). 'fullsky' -> all pixels = 1</pre>
	COMP_BETA_PIXREG_INITVALUE_MAI	P02	$2 = init_{}$	synch_beta_pixreg.fits # {none, mapname}

Many of these parameters are depending on each other. See documentation for details!

**** **** European Commission

Model specific parameters

** * → COMP BETA INT LMAX02 = -1 # alm sampling (>=0), local sampling (-1) COMP BETA INT LNLTYPE02 = marginal # {chisg,ridge,marginal,prior} COMP BETA INT PIXREG02 # {fullsky,single pix,pixreg} = fullsky COMP BETA INT SAMPLE NPROP02 = .false. COMP BETA INT SAMPLE PROPLEN02 = .true. COMP BETA NPROP02 = fullsky # nprop map, local sampling (fullsky = 1) COMP BETA INT NPROP INIT02 $\# \{ > 0, < 0 \text{ to disable} \}$. overwrites nprop = 1000 # init values from nprop map. local sampler = 10 COMP BETA UNI NPROP LOW02 # {>= 0} local sampling. minimum number # of proposals per pixel region = 2000 # {> 0} local sampling. minimum number COMP BETA UNI NPROP HIGH02 # of proposals per pixel region = mask synch beta local.fits # local sampler mask COMP BETA MASK02 COMP BETA PROPLEN02 = fullsky # proposal length map, local sampling # (fullsky = 1.d0)COMP BETA INT PROPLEN INITO2 = 3.d-3 # {> 0, < 0 to disable} overwrites proplen # init values from map COMP BETA ALMSAMP INIT02 = init alm synch beta 9reg.dat COMP BETA INT NUM PIXREG02 = 9 # number of pixel regions to sample (from 1 to N) # regions above N set to 0 (and prior value) COMP BETA INT FIX PIXREG02 # {none, '1,3,4'} pixel regions to fix, = none # i.e. freeze on init COMP_BETA_INT_PIXREG_PRIORS02 = none # {none, string with prior means of all pixel regions} = map 9regions n1024.fits # Pixel region map COMP BETA PIXREG MAP02 $#(from 1 \rightarrow N)$. 'fullsky' \rightarrow all pixels = 1 COMP BETA PIXREG INITVALUE MAP02 = init synch beta pixreg.fits # {none, mapname} * Affects input spectral parameter map. If pixel-by-pixel structure, this must be -1 ****** Defined for poltype (polarization type), "INT" = poltype index 1 {T or T+Q+U},

"POL" = poltype index 2 {Q+U or Q}, "POL3" = poltype index 3 {U}

Funding

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

"BeyondPlanck"

Ο

- COMPET-4 program
 - PI: Hans Kristian Eriksen
- Grant no.: 776282
- Period: Mar 2018 to Nov 2020

Collaborating projects:

- "bits2cosmology"
 - ERC Consolidator Grant
 - PI: Hans Kristian Eriksen
 - Grant no: 772 253
 - Period: April 2018 to March 2023

- "Cosmoglobe"
 - ERC Consolidator Grant
 - PI: Ingunn Wehus
 - Grant no: 819 478
 - \circ $\$ Period: $\$ June 2019 to May 2024

Questions?

European Commission

Beyond PLANCK

Commander

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

JPL

Cosmoglobe Beyond