
Kristian Joten Andersen

The Commander parameter file

BeyondPlanck online hands-on tutorial, November 22-23, 2020
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 776282

2

What is the Commander parameter file?

● All information going into any Commander run
○ The “recipe”

● Three main parameter types
○ Infrastructure parameters; these control the behaviour of the algorithms

and IO
○ Data set parameters; properties of each data set
○ Model parameters; properties of each sky component

● Commander documentation is available through the project home page:
https://docs.beyondplanck.science/#/README (direct link)

● Caveats:
○ This is a software platform for cutting-edge research, and therefore by

nature a continuous work-in-progress.
○ “Alpha state”
○ Support is provided on a strictly voluntary basis; there is no designated

“help desk”
○ If you find information missing, please contact us.

https://docs.beyondplanck.science/#/README

3

General notes about read-in

● Any line starting with # is assumed as a comment

● Blank lines are allowed

● Any specific path should be given inside apostrophes
○ ‘path/to/some/data/data.dat‘

● Every parameter takes the form:
PARAMETER_NAME = value

● The first occurance of a parameter is the one that will be read

4

General notes about read-in

@INCLUDE
● Recurse into the given file
● “@INCLUDE parfile2.txt” will include parameters from parfile2.txt at the

current position in the original parameter file

Command line read-in

● Any parameter may be specified using the command line
● --PARAMETER_NAME=value (no spaces)
● Will override the parameter file for the specified parameter

5

Error checking and debugging

Parameter file is parsed at the beginning of the run

● Stored in-memory in a Fortran type called “cpar” ("Commander parameters")
● Active filenames are validated with respect to existence, but not content.
● Many types of parameter file errors are therefore (automatically) detected

immediately, but not all.

6

Error checking and debugging

If you find that the code crashes with something that looks like a parameter error,
typical things to check are the following:

● Is a given parameter of the correct/expected type?

○ Check which line causes the crash, and look it up in
comm_param_mod.f90

● Does a given file contain the expected data type?

● If it is an ASCII input file, does it have the correct format?

Let’s have a look at the
 parameter file

8

Algorithm specification

path name sample

{append, new}

{new}

How often to run TOD analysis

Component separation analysis

TOD

bandpass proposals per TOD sample
*
*

➜

➜
➜
➜
➜

➜

➜

➜

➜

➜

➜ = parameters that one is likely to change on a (semi-)regular basis when working with
 Commander, see the documentation for details.

➜

9

Algorithm specification

**
Seljebotn et al. 2019,
A&A, 627, A98

Conjugate Gradients (CG)

(r
es

id
ua

l o
r c

hi
sq

ua
re

)

*

* If using chisq: set to ~5 as this check is more expensive than residual

** Set all component amplitudes to zero for each CG search. Can lead to long convergence time

➜

➜

➜
➜
➜

10

Output options

Path to where all output files are written

Mixing matrix per component per band

Output initialized data and exits

Output each component per frequency band *

*

**

*

**

Output each instance as a HEALPix map at the
band resolution/pixelarization. Use with care as this
will require a lot of disk space.

Outputs non-converged CG iterations to files. Use
with care as they will overwrite converged samples
with the same numbering. Only use for debugging.

➜
➜
➜
➜

Different options of what to output

11

Data sets: inclusion

Path to where (almost) all input data is stored.
How many frequency bands are defined
(any band with # higher will not be read)

Per band inclusion flags.

Set to .true. if you want the frequency band
to be used in the analysis.

Set to .false. if you want to omit the given
band

➜
➜

➜

12

Data sets: smoothing scales

*

* Helpful to mask out problematic point sources / regions, read documentation for details.

[arcmin] larger than any FWHM of bands included in sampling at this scale

[arcmin] Any sampled spectral parameter at this smoothing scale will be smoothed with a beam
of this FWHM after sampling. For pixel-region sampling, this is the smoothing between regions!

Number of spectral parameter smoothing scales

HEALPix pixel window file

**

**

➜

13

Data sets: band specifics

➜

➜
➜
➜
➜

➜
➜

General parameter syntax:
BAND_PARAMETERxxx = value
xxx = 3-digit band number

➜

How to add new data bands will be shown in
tomorrow’s tutorials

{native, none}

14

Data sets: band specifics

➜

➜

➜
➜

➜

< 0 ~ no upper/lower limit

15

Data sets: band specifics

➜
➜

➜

➜
➜
➜

*

* TOD scan definition file. List of all compressed time-ordered data files with initial values. See
documentation.

➜
➜ {default, none, path to chain+sample}

16

Global model parameters

➜
➜

➜
➜ {.true., .false.}

➜

➜

➜
➜
➜

Component labels
Sampling mask
Max CG iterations (# of iterations for fixed_iter)

➜

➜

➜

➜
➜

➜

CG

Similar to
frequency
bands

Initial band gain and
bandpass corrections

a_lm spectral
parameter sampler

17

Model specific parameters

➜

➜

General parameter syntax:
COMP_PARAMETERxx = value
xx = 2-digit band number

➜

➜

➜

➜

➜
➜

➜

prior
RMS

prior mean, ‘none’ = no prior
initialization map

➜

Model specific parameters

➜
➜ Multiplicative amplitude scale used in CG search

Max CG iterations in amplitude sampling after marginal
likelihood spectral index sampling

➜

19

Model specific parameters: Synchrotron

➜

Prior mean
Prior RMS

➜

➜
➜

➜
➜

➜
➜
➜
➜

20

Model specific parameters

➜

➜

➜

➜

➜

➜

Many of these parameters are depending on each other. See documentation for
details!

21

Model specific parameters

➜

➜

➜

➜

➜

➜

Affects input spectral parameter map. If pixel-by-pixel structure, this must be -1
Defined for poltype (polarization type), “INT” = poltype index 1 {T or T+Q+U},
“POL” = poltype index 2 {Q+U or Q}, “POL3” = poltype index 3 {U}

** *

*
**

22

Funding

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 776282

● “BeyondPlanck”
○ COMPET-4 program
○ PI: Hans Kristian Eriksen
○ Grant no.: 776282
○ Period: Mar 2018 to Nov 2020

● “bits2cosmology”
○ ERC Consolidator Grant
○ PI: Hans Kristian Eriksen
○ Grant no: 772 253
○ Period: April 2018 to March 2023

● “Cosmoglobe”
○ ERC Consolidator Grant
○ PI: Ingunn Wehus
○ Grant no: 819 478
○ Period: June 2019 to May 2024

Collaborating projects:

23

Questions?

