

Preliminary analysis of external datasets

Duncan Watts

BeyondPlanck online release conference, November 18-20, 2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

WMAP Overview

• WMAP observed for 9 years at 5 frequency bands

European Commission

- Lower sensitivity than *Planck*, but its frequencies are interleaved with the *Planck* LFI's bands
- WMAP's scan strategy is complementary to Planck's, and can break degeneracies in both datasets' mapmaking
- TOD processing has been very well documented, and can easily be reproduced¹

¹<u>https://lambda.gsfc.nasa.gov/product/map/dr5/pub_p</u> <u>apers/nineyear/supplement/WMAP_supplement.pdf</u>

Bennett et al. (2013) arXiv:1212.5225

- WMAP K-band is a natural candidate to extend the BP pipeline
- Its 23 GHz map gives the current best publicly available template for polarized synchrotron emission
- The dataset itself is well-understood and the analysis process is well-documented by the *WMAP* Science team.
- The uncalibrated uncompressed WMAP data is 626 GB, which we can easily hold in memory all at once, which was not the case during the WMAP Science team's original analysis.
- Original WMAP data was processed year-by-year; code has been rewritten to process entire data set at once

Observing strategy

 WMAP observes the sky at ~141° separation, making the data inherently differential

European Commission

- Large fractions of the sky are covered over short
 periods of time
- Pixels are re-observed with different polarization orientation for good characterization of systematics

https://map.gsfc.nasa.gov/mission/observatory_scan.html

European Commission

Each differencing assembly (DA) consists of four radiometers, with $i=\{1,2\}$ representing orthogonal polarizations and $j=\{3,4\}$ the two differenced timestreams for a single polarization mode.

The gain, g(t) was calibrated using the orbital dipole in the original *WMAP* analysis, as were the time-independent beam transmission coefficients, a_{iA} and a_{iB} , while baselines b_{ii} were fit hourly.

$$c_{ij}(t) = g_{ij}(t) \Big[\alpha_{iA} \{ T[p_A(t)] + (-1)^i P[p_A(t), \gamma_A(t)] \} \\ - \alpha_{iB} \{ T[p_B(t)] + (-1)^i P[p_B(t), \gamma_B(t)] \} \Big] + b_{ij}$$

Adjustments for differential mapmaking

An idealized single-horn instrument has a relatively straightforward mapmaking equation that can be solved one pixel at a time

European Commission

$$oldsymbol{d} = \mathsf{P}oldsymbol{s} + oldsymbol{n}$$
 $\mathsf{P}^T\mathsf{N}^{-1}\mathsf{P}oldsymbol{s} = \mathsf{P}^T\mathsf{N}^{-1}oldsymbol{d}$

An idealized differential induces off-diagonal pixel correlations, and requires indirect inversion of a large matrix, which requires all data to be processed at once.

Adjustments for differential mapmaking

An idealized single-horn instrument has a relatively straightforward mapmaking equation that can be solved one pixel at a time

European Commission

$$oldsymbol{d} = \mathsf{P}oldsymbol{s} + oldsymbol{n}$$

 $\mathsf{P}^T\mathsf{N}^{-1}\mathsf{P}oldsymbol{s} = \mathsf{P}^T\mathsf{N}^{-1}oldsymbol{d}$

An idealized differential induces off-diagonal pixel correlations, and requires indirect inversion of a large matrix, which requires all data to be processed at once.

WMAP analysis updates

Highly compressible data, raw data are stored as floats, but are recorded as discrete values

European Commission

> Can yield a factor of ~5 reduction in data volume simply by storing data as integers

- Baseline sampling has been replaced with correlated noise fitting (Ihle et al. 2020)
- Gain fitting uses formalism of Gjerløw et al. 2020

Raw Time-ordered Data

Current results

European Commission

Commander solution

Current results

European Commission

Commander-WMAP

Current results

Commander-WMAP-dipole

Cost per Gibbs sample

European Commission

Data volume	81 GB on disk 177 GB of RAM
Initialization time	63 seconds of data I/O 141 seconds to read in model
Gibbs sampling cost	160 seconds per CG iteration $\mathcal{O}(5)$ iterations to converge
Total cost per sample	800 seconds using 64 2 GHz AMD cores

Future Work

 Instrument parameters are taken as fixed from WMAP nine year analysis; when combined with Planck data, we will be able to sample these parameters directly in the Gibbs chain

European Commission

> • TOD-level understanding of *WMAP* data set will allow for higher-quality maps

Funding

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

"BeyondPlanck"

Ο

- COMPET-4 program
 - PI: Hans Kristian Eriksen
- Grant no.: 776282
- Period: Mar 2018 to Nov 2020

Collaborating projects:

European Commission

- "bits2cosmology"
 - ERC Consolidator Grant
 - PI: Hans Kristian Eriksen
 - Grant no: 772 253
 - Period: April 2018 to March 2023

- "Cosmoglobe"
 - ERC Consolidator Grant
 - PI: Ingunn Wehus
 - Grant no: 819 478
 - \circ $\$ Period: $\$ June 2019 to May 2024

Questions?

European Commission

Beyond Commander

ASITAS OSIOPENSIS AND CCCX

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Cosmoglobe Beyond

